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•  Results
–Problem: all fluids have viscosity, can we measure the viscosity
of QGP?

Rheology of Quark Gluon Plasma

Outline

• Selected results from STAR experiment
• Investigating the perfect liquid

Answer: Yes, two-particle transverse momentum correlations
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The STAR experiment

PMD

The heart of the experiment: TPC

My work/in this talk:
Net charge fluctuations
pT fluctuations

Pseudorapidity distribution of 
Photons at forward rapidity

TPC

PMD

A reconstructed Au+Au collision in the STAR TPC at               GeVs
NN

= 130

Azimuth coverage: 2π
|η|<1.0 midrapidity, 
Centrality: % of cross-section
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Measurements at forward rapidity

PMD

Pre - shower detector with fine granularity
Two planes: Veto +Pre-shower
3X0 lead plate
η coverage:
Distance from vertex : 542 cm

!3.7 <" < !2.3
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Motivation

• Measurements of particle multiplicity provide information on particle
production mechanisms.

– Ref[1] BRAHMS Collaboration, I. Arsene et al., Nucl. Phys. A 757 (2005) 1;
         PHOBOS Collaboration, B.B. Back et al., Nucl. Phys. A 757 (2005) 28;

   STAR Collaboration, J. Adams et al., Nucl. Phys. A 757 (2005) 102.
   PHENIX Collaboration, K. Adcox et al., Nucl. Phys. A 757 (2005) 184.

• Event-by-event correlation between photon and charged particle
multiplicities can be used to test the predictions of formation of
disoriented chiral condensates.

– Ref[2] WA98 Collaboration, M.M. Aggarwal et al., Phys. Rev. C 64 (2001) 011901®

• The variation of particle density in pseudorapidity with collision
centrality can shed light on the relative contribution of soft and hard
processes in particle production.

– Ref[3] PHENIX Collaboration, K. Adcox et al., Phys. Rev. Lett. 86 (2001) 3500.
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Principle of pre-shower

• Photons passing through the
converter initiate an
electromagnetic shower &
produce a large signal on
several cells of the sensitive
volume of the detector.

• Hadrons normally affect only
one cell & produce a signal
representing minimum
ionizing particles.

Photon-hadron discrimination
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Run configuration

• CuCu 200 GeV, Run V (2005)
• Trigger condition : Minimum bias
• Total number of events analyzed:
   ~300K
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Results - I
B. I. Abelev et al., (STAR Collaboration) Nucl. Phys. A 832 (2009) 134 
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Results - II
B. I. Abelev et al., (STAR Collaboration) Nucl. Phys. A 832 (2009) 134 
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Results - III

Longitudinal scaling

B. I. Abelev et al., (STAR Collaboration) Nucl. Phys. A 832 (2009) 134 

Longitudinal scaling for produced photons is independent of colliding ion species,
beam energy and collision centrality
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Summary - I

• Presented photon multiplicity distributions measured at forward
rapidity                             for Au + Au and Cu + Cu collisions at
200 and 62.4 GeV.

• Photon multiplicity per participating nucleon pair is observed to
be independent of collision centrality indicating that photon
production is dominated by soft processes.

• Photon production per unit rapidity per average number of
participating nucleon pair vs.                 shows longitudinal scaling
which is independent of beam energy, collision centrality and
colliding ion species.

!3.7 <" < !2.3

! " ybeam
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Dynamical net charge fluctuations

• Quark Gluon Plasma should produce a final state characterized   by
dramatic reduction of the net charge fluctuations relative to that of a
hadron gas.

                 = 1 for quark gluon plasma
                 = 3 for resonance gas
                 = 4 for uncorrelated pion gas
• Net charge correlations/fluctuations are sensitive to the production

dynamics :
Delayed hadronization

 Collective motion

D =
4!Q

2

Nch

AIM : To study the beam energy and system size dependence of net
charge dynamical fluctuations.

S. Jeon and V. Koch, Phys. Rev. Lett. 85 (2000) 2076
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Results - I
We use net charge dynamical fluctuation measure, 

( ) ( )
, 2 2

1 1
2dyn

N N N N N N

N NN N
!

+ + " " + "

±

+ "+ "

" "
= + " #

!
±,dyn

•  Dynamical net charge
   fluctuations are finite for
   both the systems and at all
   energies.
•  Weak system size
   dependence observed here
   between Au + Au and
   Cu + Cu systems.

B.I. Abelev et al., (STAR Collaboration) Phys. Rev. C 79 (2009) 024906
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Results - II

• Dataset follow a “common” trend.
• System size dependence still apparent.
• Energy dependence is also observed.
•               does not scale with N binary.!

±,dyn

Results extrapolate to pp 
within errors.

B.I. Abelev et al., (STAR Collaboration) Phys. Rev. C 79 (2009) 024906
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Results - III

• Centrality dependence observed here.
• dNch/dη/(<Npart>/2) rises at mid-rapidity by
   56% vis-à-vis pp.
• Similar rise (~ 40%) observed here when
                is scaled with dNch/dη.!

±,dyn

B.I. Abelev et al., (STAR Collaboration) Phys. Rev. C 79 (2009) 024906
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Summary - II

•  Finite dynamical fluctuations observed in both energies &
systems measured.

• Common behavior – approx. 1/N Vs. centrality.
•                      changes by ~ 40% from peripheral to central

    collisions as dNch/dη/(<Npart>/2) at midrapidity changes by

almost the same  magnitude.

dNch

d!
*"

±,dyn
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Anisotropic flow
partonic hadronic

Coordinate-Space Anisotropy

Momentum-Space Anisotropy

2 2

2 2

y x

y x
!

< " >
=
< + >

Elliptic flow: reveal the early
stage collision dynamics

Number of participating nucleons
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Anisotropic flow…..

Characterize azimuthal dependence of the resulting observables 
by their Fourier expansion
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n
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no sine terms…
no odd cosine terms…
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Elliptic flow, largest coefficient

ϕ
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Perfect liquid conjecture

Measuring transport properties: diffusion, sound, viscosity ….
are new to particle physics!

Data approaches ideal HYDRO calculations for central collisions

Ideal hydro
predictions

First STAR paper: 
K. H. Ackermann et. al. PRL86 (2001)

Ideal hydrodynamics simulations describe the measured anisotropies 
in the low transverse momentum region,    

pT ! 1GeV / c
19
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Viscosity

Perfect Fluids …..

Fascinating observation!
• Quark Gluon Plasma
   T ~ 200 MeV ~ 1012K
• High temperature superliquid!

Measure of fluidity is provided by ! / s

Shear viscosity relative to entropy density of a
 system indicates: 

how strongly a  system is coupled?
how perfect the liquid is?

Tyx = !"
dvx

dy

Measure of resistance of a fluid which
is deformed by shear stress
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Measurement of viscosity based on
pT correlations

• Viscous friction arises as fluid elements flow past each other, thereby reducing
the relative velocity: damping of radial flow.

• Tzr changes the radial momentum current
of the fluid,

• Diffusion equation for the momentum current

• Viscosity reduces fluctuations, distributes excess momentum density over the
collision volume: broadens the rapidity profile of fluctuations.

• Width of the correlation grows with diffusion time (system lifetime) relative to
its original/initial width

Gavin and Aziz, Phys. Rev. Lett. 97 (2006) 162302 
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Estimate from two particle
correlations

4πη/s

Gavin et al 0.08 <! / s < 0.3

Based on:
pT correlations, 
STAR, J. Phys. G32. L37, 2006 (AuAu 200 GeV)

Number density correlations, 
STAR, PRC 73, 064907, 2006 (AuAu 130 GeV)

But, ……
Proper estimation of viscosity to entropy density 
ratio requires a study of transverse momentum flow 
which includes both….. 

! / s " 0.08

! / s " 0.3
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Rheometry of QGP….
• Integral correlation function (Gavin & Aziz, Phys. Rev. Lett. 97 (2006) 162302).

C !"( )= p#,1p#,2 $ p#
2

C

!"

!
central

! peripheral

pt

! c

2
"!

0

2
= 4# $

0

"1
"$ f

"1( )

! =
"

T
c
s

η     = shear viscosity
Tc = critical temperature
S   = entropy density

τ0  = formation time
τf  = freeze-out time
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This work: differential pTpT
correlations..
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2-D (Δη-Δφ) correlations

|η| ~ 1 η ~ 0

Δφ
Δη

Near side

Away side

! = " ln tan(
#

2
)
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Theoretical/Physics Caveats

• The system temperature and viscosity
    vary through the lifetime of the collision system.

– Our measurement will yield time averaged quantities

• Freeze out times must be inferred from other data + model
• Other effects may contribute to the longitudinal shape of the

correlation function
– Decays, jets, radial flow, CGC, etc
– Jet expected to have minor impact in the momentum range

considered in this analysis.
– Diffusion expected to dominate the broadening

• A detailed interpretation of the measurements requires collision
models that provide comprehensive understanding of HI data.

!"
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Dynamical  Effects (1):
Resonance Decays

• An increase in system temperature and/or radial flow implies kinematical
focusing of the decay products: narrowing of the correlation function.

!"

parent at rest

!"

low temperature
or radial velocity

!"

medium temperature
or radial velocity

!"

high temperature
or radial velocity
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Dynamical  Effects (2): Radial Flow

• Based on PYTHIA p+p collisions at s = 200  GeV

0.2 < p
T
< 2.0 GeV/c

|! |< 1
Particle Selection:

• PYTHIA Simulation including radial flow
(transverse boost) with v/c = 0.3

•Near-side kinematic focusing,
formation of ridge-like structure,
•Different shapes
•Narrowing of near side

S. A. Voloshin, arXiv:nucl-th/0312065
C. Pruneau, et al., Nuclear. Phys.  A802, 107 (2008)

M. Sharma & C. A. Pruneau, Phys. Rev. C 79 (2009) 024905

28



Monika Sharma
Brookhaven National Lab, Mar 30, 2010

STAR Analysis

• Data from STAR TPC, 2π coverage
• Dataset: RHIC run IV: AuAu 200 GeV
• Events analyzed: 10 Million
• Minimum bias trigger
• Track kinematic cuts

o Goal: measure medium properties i.e., Bulk Correlations
o |η|<1.0
o 0.2< pT < 2.0 GeV/c, No trigger and associated particle

• Analysis done vs. collision centrality measured based on
multiplicity in |η|<1.0

PMD

Slices: 0-5%, 
5-10%……. 70-80%
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Results….

Near side
Away side

Shape of the correlation function 
partly determined by momentum 
conservation effects…..

N. Borghini arXiv:0707.0436

STAR Analysis
PRELIMINARY

 Sharp peak observed at 
    Δφ ~ 0 and an away-side
    ridge at Δφ ~ π
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30-40%

Results….
70-80% 60-70% 50-60%

40-50%

Increasing centralityt

Monotonic decrease in magnitude

 Formation of ridge-like structure 
    on near-side
 cos(2Δφ) modulation (elliptic flow)

31



Monika Sharma
Brookhaven National Lab, Mar 30, 2010

Results…..

• Prominent near side peak in
peripheral collisions
• Ridge-like structure on the
away-side (momentum conservation)
in peripheral collisions.

•Monotonic reduction of the correlation
amplitude with increasing Npart.
• Evidence of elliptic flow component in
mid-central central collisions.

•Emergence of a near-side ridge with 
increasing Npart.
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Technical issues….

 Centrality selection technique
 Dependence of the correlation function on Z-vertex
 Dependence of the correlation function on magnetic field 
    direction
 Track merging effects

33



Monika Sharma
Brookhaven National Lab, Mar 30, 2010

Track merging effect

p
T 2,+

p
T1,+ p

T1,+
p
T1,!

p
T 2,+ p

T1,+

S

Graphical visualization of crossing point position in the xy plane

 

!
B!

pT1 = 1.0GeV / c

pT 2 = 2.0GeV / c

“S”, shows up in azimuth as a point
where tracks have merged.
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Results…
20-30%

Reduced pair yield observed 
at Δη ~ Δφ ~ 0
Shown for one Z-bin only 0<Z<2.5cm

Correlation function corrected for 
track merging effects.
Shown for full statistics
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Near-side projection

STAR Preliminary

Results…
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Correlation width vs. collision
centrality

• Width approximately constant
in most peripheral bins.

– Incomplete thermalization?
– Radial flow effects?
– Event centrality selection 
   technique?

• Linear increase for Npart > ~100
• Decrease in most central collisions

Working on finalizing the systematic errors
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Estimation of shear viscosity

! c

2
" !

0

2
= 4# $

0

"1
" $ f

"1( )

!
0
= 0.542 ± 0.003

!
c
= 1.021± 0.029

!
0
= 1 fm/c

! f = 20 fm/c

 References for freeze out time estimates 
    in peripheral collisions

Bjorken PRD 27 (1983)
Teaney, Nucl. Phys. 62 (2009)
Dusling et al. arXiv:0911.2720
M. Luzum & P. Romatschke
      arXiv:0901.4588 

!

s
= 0.17 ± 0.02(stats.)

Non Gaussian shape observed in central collisions suggests broadening
could have contributions from other phenomena as well.

!
0
= 1 fm / c

STAR Preliminary

The above value is thus an upper limit of the time averaged viscosity if
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η/s estimates…..
STAR Preliminary
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Summary - III

• Presented first measurements of viscosity based on transverse momentum
correlations using C at RHIC.

• C exhibits near-side ridge-like structure in momentum space for the most
central collisions.

• The over-all shape of the correlation function evolves significantly from
peripheral to the most-central collisions.

• We use a near-side projection (i.e.,                  ) of C to determine the
evolution of momentum correlations with centrality.

• Based on the formula given by Gavin et al and common estimates of
freeze-out times, we estimate an upper bound on the viscosity of the
matter produced in Au+Au collisions.

| !" |< 1.0
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Back-up
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Centrality Standard
statistical
errors

RMS
|Δφ|<1.0
radians

RMS
-1.0<Δφ
<0.17
radians

70-80% 0.542+0.021 0.542+0.003 0.542+0.02 0.5406 0.5449

60-70% 0.534+0.018 0.501+0.002 0.501+0.009 0.5505 0.5505

50-60% 0.504+0.088 0.519+0.002 0.519+0.012 0.5764 0.5753

40-50% 0.550+0.010 0.557+0.002 0.557+0.011 0.5941 0.5992

30-40% 0.664+0.019 0.667+0.003 0.667+0.016 0.6722 0.6230

20-30% 0.864+0.051 0.886+0.006 0.891+0.036 0.8452 0.7315

10-20% 1.003+0.117 1.043+0.011 1.043+0.064 0.9267 0.8480

5-10% 1.075+0.211 1.17+0.02 1.17+0.13 0.987 0.8899

0-5% 1.108+0.255 1.021+0.029 1.021+0.186 0.9449 0.8229
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Shear Viscosity at RHIC

Schaefer & Teaney, Rept.Prog.Phys.72:126001,2009  

biggest
smallest

Dimensions:
entropy density s = density (→ s/kB)
shear viscosity η = pressure × time = energy × density × time
η/s = energy × time =  !! 1
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Karsch et al.

T
C

T (MeV)

s /T
3
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